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Abstract 

It has been recently observed that the generalized Goldberg-Sachs theorem in general relativity 
as well as some of its corollaries admit appropriate Riemannian versions. In this paper we use 
the formalism of spinors to give alternative proofs of these results clarifying the analogy between 
positive Hermitian structures of oriented Riemannian four-manifolds and shear-free congruences of 
oriented Lorentzian four-manifolds. We also prove similar results for oriented pseudo-Riemamrian 
four-manifolds when the metric is of zero signature. This allows us to describe compact oriented 
four-manifolds possibly admitting a pseudo-Riemannian Einstein metric of zero signature whose 
positive Weyl tensor has two distinct eigenvalues corresponding to non-isotropic eigenspaces. 

Subj. Class.: Differential geometry; General relativity 
1991 MSC: 53C50,53(3155,53(325 
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1. Introduction 

The Goldberg-Sachs theorem in general relativity treats the geometry of the shear-free 
congruences of an oriented Lorentzian four-manifold satisfying the vacuum field equation. 
It was observed in [ 13,161 that this theorem admits a formulation in a Riemannian frame- 
work, which says that an oriented Riemannian Einstein four-manifold A4 admits (locally) a 
positive orthogonal complex structure if and only if the spectrum of the positive Weyl tensor 
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(considered as an endomorphism of the bundle A+M of self-dual 2-forms) is degenerate. 
This result was successfully used by Boyer [3] and LeBrun [ 121 to study compact Einstein 
Hermitian surfaces. 

A detailed analysis of the local existence of positive orthogonal complex structures on 
oriented Riemanman four-manifolds was given in [2] where some other applications to the 
geometry of Hermitian surfaces where obtained. Summarizing Theorem 1 and Proposition 
3 in [2] we obtain the following Riemanman version of the Generalized Goldberg-Sachs 
Theorem ([9,14, Proposition 7.3.35, 211). 

Theorem A. Let (M, g) be an oriented Riemannian four-manifold with nowhere vanishing 
positive Wql tensor W+. Suppose that J is a positive g-orthogonal principal almost- 
complex structure on M, i.e. W+ has no component in the bundle Hom(AtM), where 
Ai M denotes the vector bundle of J-anti-invariant 2-forms on (M, J). Then any two of the 

following three conditions imply the third: 
(i) the spectrum of W+ is degenerate; 

(ii) J is integrable; 
(iii) the codifferential SW+ of W+ vanishes on any triple of (1, 0)-vectorjelds. 

Since any positive g-orthogonal integrable almost-complex structure is principal (see 
[22]), we obtain using the second Bianchi identity and Theorem A that the spectrum of the 
positive Weyl tensor of a Hermitian surface with J-invariant Ricci tensor is degenerate [2, 
Theorem 21, a result which corresponds to the Robinson-Shild Theorem in the Lorentzian 
case ([ 171, see also [ 14, Proposition 7.3.431). 

The complete description of the irreducible components of the covariant derivative D W+ 
of W+ under the action of the unitary group U (2) given in [2] leads to similar results by 
considering the Penrose operator P instead of the codifferential6, i.e. the complementary 
part P W+ of 6 W+ in the covariant derivative D W+, (see [2, Propositions 5 and 61). We 
have the following: 

Theorem B. Let (M, g) be an oriented Riemannian four-manifold. Suppose that J is a 
positive g-orthogonal principal almost-complex structure on M. Then 

(i) if the spectrum of W+ is everywhere non-degenerate, J is integrable if and only if 
(PW+)(Zl, Z2, Z3, Z4, Z,) = Oforany (l,O)-vector$elds Z1, Z2, Z3, Z4, Zg; 

(ii) if the spectrum of W+ is everywhere degenerate, but Wf nowhere vanishes, J is 
integrable zfand only if (PW+)(Zl, Z2, Z3, Z4, X) = 0 for any (l,O)-vector$elds 
Zl,Z2, Z3,Z4 and any vector$eld X; 

(iii) if J is integrable, the spectrum of W+ is degenerate zfand only tf( P W+)z, ,z2,z3,z4,x 
= 0 for any (1, 0)-vector$elds Z1, Z2, 23, Z4 and any vectorfield X. 

It follows from Theorem B that if (M, g) is an oriented Riemannian four-manifold for 
which PWf = 0, then the spectrum of Wf is everywhere degenerate. Moreover, the 
eigenspace corresponding to the simple eigenvalue of W+ determines a K%hler structure on 
the open set where W+ is non-zero, up to a two-fold covering and a conformal change of 
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the metric [2, Theorem 31. In this note we use the formalism of spinors to give alternative 
proofs of Theorem A and Theorem B. These theorems can be rewritten in a “spinorial” form 
(see Theorem 1 and Theorem 2 in Section 4) which allows one to provide analogous results 
for arbitrary pseudo-Riemannian four-manifolds. In such a way we make transparent the 
analogy between positive Hermitian structures of oriented Riemannian four-manifolds and 
shear-free congruences of oriented Lorentzian four-manifolds. In particular, we provide the 
following Lorentzian version of the above mentioned Theorem 3 in [2]: 

Theorem C. Let (M, g) be an oriented Lorentzian four-manifold. Assume that the Weyl 
tensor W is annihilated by the Penrose operator Then any principal null direction of W is 
multiple, i.e. W belongs (at any point of M) to one of the Petrov classes D, N or 0. 

The proof of Theorem A presented here follows that given in [21] (see also [ 14, Proposition 
7.3.35]), while Theorem B and Theorem C seem to have not appeared in the literature. 

Finally, in Section 5, we discuss briefly oriented pseudo-Riemannian four-manifolds 
(M, g) with metric g of signature 0. In this case one can see that Theorem A and Theorem 
B (as well as the corollaries mentioned above) hold true by considering the negative or- 
thogonal almost-complex structures of (M, g). As an application of Theorem A we obtain 
the following result closely related to [6] and [ 151: 

Theorem D. Let (M, g) be an orientedpseudo-Riemannian Einstein four-manifold with a 
metric of signature 0. Suppose that at any point of M the positive Wql tensor Wf has exactly 
two distinct eigenvalues corresponding to non-isotropic eigenspaces. Then, replacing M by 
a two-fold covering if necessary, (M, g) admits a negative g-orthogonal complex structure 
J. Moreover if M is compact, then (M, J) is either a ruled sur&ace or a minimal surface 
of class VI IO with no global spherical shell, and with second Betti number even and 
positive. 

Conversely, it follows from Theorem A (see the proof of [2, Proposition 11) that the 
positive Weyl tensor of an indefinite Hermitian Einstein metric g on a complex surface 
(M, J) either vanishes identically or satisfies the conditions of Theorem D. The only known 
examples of such metrics are the natural indefinite K%hler-Einstein metrics on the minimal 
irrational ruled surfaces which are the total space of a flat CP’-bundle over a curve S of 
genus g >_ 2 (see [ 151). It is still an open problem whether the other surfaces described in 
Theorem D do admit indefinite Hermitian Einstein metrics. 

2. Positive orthogonal almost-complex structures on oriented Riemannian 
four-manifolds 

In this section we will use the spinorial formalism to describe the properties of the positive 
g-orthogonal almost-complex structures of an oriented Riemannian four-manifold (M, g) . 
We refer to [ 18,191 for more details and proofs. 
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Starting from the fact that the simply-connected double-covering group Spin (4) of S 0 (4) 
splits as 

Spin(4) = Sp(1) x Q(l) 

we will consider the rank 2 complex vector bundles E+M and E-M of positive and 
negative spinors associated to an oriented Riemannian spin four-manifold (M, g). (These 
bundles are locally defined on any Riemannian four-manifold since locally a spin structure 
always exists.) Thus Z+M and .X-M are naturally equipped with a quatemionic and a 
(real) symplectic structure and we have the following decomposition: 

(1) 

where E$M denotes the kth symmetric tensor power of Z+M. (The same formula holds 
for E-M). 

Denote by j+ and E+ (resp. j_ and E-) the quatemionic conjugation and the symplectic 
form of _E+M (resp. E_ M). Then we may identify the complexified tangent bundle TM@C 
of M with ;T;+M 8 .X-M. (Here and henceforth we will freely identify .E+M and E-M 
with the corresponding dual bundles via the symplectic structures E+ and E_). Thus the 
complex conjugation in TM @ C is induced by the operator o = j+ x j- and the C-linear 
symmetric extension of g on TM @ C can be expressed in terms of the symplectic forms 
E+ and E- in the following way: 

g(!3 @J VI, (2 8 ~2) = E+@, 62k-(rl1, ~2), %I, 62 E z+M, VVI, ~2 E C-M. 

(2) 

We also identify the vector bundle A*M 63 C of complex 2-forms of M with E-M $2?M. 
Then the subbundle A+M of self-dual 2-forms of M is isomorphic to [EZM], where [ ] 
indicates the inverse of the complexification. Moreover, the bundle Sym, (A$M) of traceless 
symmetric endomorphisms of A:M can be identified with [ Z$M]. 

For any point x E M the set of positive orthogonal almost-complex structures on 
(TM,, g) is parametrized by the 2-sphere P(E+M,) since any such structure J is uniquely 
determined by its (1, 0)-space, i.e. by a g-isotropic complex 2-plane of TM, @I C and any 
such a plane has the form {c 63 n: 17 E E-M,}, where f is a non-vanishing element of 
Z+M,, uniquely determined up to multiplication by a non-zero complex scalar. For any 
[e] E P(E+M) we denote by TcM the (1, 0)-space of the positive orthogonal almost- 
complex structure Jc. Note that the quaternionic conjugate $ = j+ (4) of { corresponds to 
the almost-complex structure -J, . 

If we denote by F,(., .) = g(Jc., .) the K%hler form of Jc and by Ag,‘M and A>*M 
respectively the bundles of (2,O) and (0,2) 2-forms we have (see [19]) 

RFe = -iRc 0 c; A;“M = C(fy 8 6); A$* = C(F @ g), 

where 0 denotes the symmetric product. 
We will say that a section [t] of P(E+M) is integrable if the corresponding almost- 

complex structure Jt is integrable. The Levi-Civita connection on (M, g) induces on any 
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of the bundles ,?T+M and E-M a linear connection D which preserves the symplectic 
structures E+ and E_. Then the integrability condition for [t] can be expressed 

17,191): 

c+(Vz.$, 6) = 0, VZ E TtM. 

Considering the positive Weyl tensor W + of (M, g) as a section of the vector 
Syrq,(A+M) we denote by !P the corresponding (real) section of the complex 
Ei M. Then for any complex vector fields Xk = & @ nk, k = 1,2,3,4 we have 

w+(xlt x2, x3, x4) = E-(ql, q2k(r/3, q4)p(h, 62,639 k>. 

as (see 

(3) 

bundle 
bundle 

(4) 

We will say that a direction [c] in E+M (resp. a positive orthogonal almost-complex 
structure Jc) is principal if ly (4, e, t,() = 0. 

For a principal direction [e] we define its multiplicity as the largest number 1 5 p 5 4 
such that 

~(~,~,...,~,r1,r2,...,rp-1)~o, &-kEz+M, k=l, . . . . p-1. (5) \ v / 
(5-p) times 

Using (4) we obtain the following characterization of the principal directions in C+ M in 
terms of the corresponding almost-complex structures: 

Lemma 1. Let (M, g) be an oriented Riemannian four-manifold with nowhere vanishing 
positive Wql tensor Let [e] be a section of P(Z+M). Denote by Jc the corresponding 
positive orthogonal almost-complex structure and by A$ M the bundle of .I6 -anti-invariant 
2-forms. Then 

(i) [t] is a principal direction iff W+ has no component in Horn (A$ M); 
(ii) [t] has multiplicity 2 iffthe spectrum of W+ is degenerate and Fc lies in the eigenspace 

of W+ corresponding to the simple eigenvalue; 
(iii) [.$I has multiplicity at most 2. 

Proof Since any (1, 0)-vector has the form c @ n for some n E _T_ M, it follows from (4) 
that 6 is principal if and only if W+ has no component in A$2 M @ Ai32 M or equivalently 

in Hom(AiM). In this case W+ has the following form (see Section 2.2 in [2]): 

where a is a real function and 4 is an element of Ai M. Moreover, according to (4) 6 has 
multiplicity 2 iff W+(Zl, Z2, Z3, X) = 0 for any (1, 0)-vectors Zt , Z2, Z3 and any vector 
X. Using the latter condition and (6) we prove (ii). If .$ has multiplicity 3, then we have 
that W+(Zl, Z2, X, Y) = 0 for any (1, 0)-vectors Zt, Z2 and for any vectors X, Y. But 
this implies a = 0, $ = 0 , i.e. W+ vanishes, a contradiction. 0 
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(1) It is well known (see for example [19,22]) that for an integrable complex structure 
J the positive Weyl tensor Wf has no component in Horn (AiZt4), so any integrable 
section of P( Z+M) is principal. 

(0 

(2) At a point where W+ does not vanish the principal directions [c] are determined by 
the eigenspaces of W+ up to quatemionic conjugation as follows (see [20] and [2, 
Remark 11): 

If W+ is not degenerate at point x E M, i.e. W+ has three distinct eigenvalues h+ > 
ho > h_ at X, then there are two (up to sign) different principal positive orthogonal 
almost-complex structures J’ and J” whose Kahler forms F’ and F” are respectively 
given by: 

(ii) 

F, = @+ - ho)“* F_ _ Go - vl’* F+ 

(h+ - a_)‘/* (h+ - a-)‘/* ’ 
F,, = @+ - ho)“* F_ + (ho - w”* F+ 

(h+ - a_)‘/* (h+ - a_)‘/* ’ 

where F+ (resp. F_) denotes one of the two generators of the (h+)-eigenspace (resp. 
(h-)-eigenspace) of W+ with square-norm equal to 2. 
If W+ is degenerate, but non-zero at a point x E M there is one (determined up to sign) 
principal positive orthogonal almost-complex structure J, whose KShler form F is the 
generator of the simple eigenspace of W+ with square-norm equal to 2. 

3. Null directions of oriented Lorentzian four-manifolds 

In this section we will briefly recall some facts concerning the geometry of null directions 
of an oriented Lorentzian four-manifold (M, g). A more detailed discussion, proofs and 
references can be found in [7,14]. 

The group SL(2, C) is the two-fold simply connected covering of the connected compo- 
nent SOu( 1, 3) of the group of the positive Lorentzian transformations. The (real) spinor 
representations _E and F of SL(2, C) are obtained by the action of SL(2, C) on the spaces 

C* and C* respectively. (Here C* denotes the complex conjugate of C2). The complex 
symplectic structures E and F of E and 3 identify .E and x with the corresponding dual 
spaces and we have the following decomposition: 

_EP@P=E P+4 @ zp+q-* $ _. . @ EP-4, P 292 

where .Zk denotes the kth symmetric tensor product of E. (The same formula holds for I). 
These algebraic considerations have an immediate geometric interpretation when (M, g) 

is an oriented Lorentzian four-manifold with a spinorial structure, i.e. with a principal 
SL(2, C)-bundle Q, which covers the principal SOo(l,3)-bundle Q of the positive g- 
orthonormal frames of TM. Then we may identify the complexified tangent bundle TM @ C 

with EM@ C M where EM and EM denote the rank 2 (complex) vector bundles associated 
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to the corresponding representations of SL (2, C) via e. Then the C-linear extension of the 
metric g satisfies 

The Hodge star-operator * of (M, g) induces a complex structure on A2M, so that we have 
the following identifications of (complex) vector bundles: 

(f?M, *) 2 9M, Syrno(A2M, *) c .E4M. (7) 

The Levi-Civita connection D of (M, g) induces a connection V on e. We will denote 
also by V the linear connection induced on any of the vector bundles .X M and FM which 
preserve the symplectic structures E and F . 

For any point x E M the set of null directions of (TM,, g), i.e. the directions in TMx 

generated by a non-zero g-isotropic vector 1, can be identified with P(_EM,) since any such 
a vector I corresponds to an element of EM, @I TMx of the form 6 8 c, where e is a 
non-vanishing element of En/r, and i denotes the complex conjugate of c. For any section 
[c] of P(E M) denote by Te M the rank 2 complex subbundle of TM @I C of the elements of 
TM 63 C which annihilate 6, i.e. Tc M = (6 8 17: 17 E XM}. Then a section [c] of P(Z7M) 
is said to be integrable or a shear-free congruence if 

E(D&, c> = 0, VZ E TcM. 

Note that the above condition is conformally invariant and can be also expressed by: 

Dzi Zj E TcM, VZi, Zj E TcM. (8) 

Considering the Weyl tensor W of (M, g) as a C-linear symmetric traceless endomor- 
phism of (A2M, *), we denote by @ the corresponding (complex) section of E4M, via (7). 

A null direction [e] is called principal if it satisfies the property w (.$, 6, e, 6) = 0. (The 
principal null directions have first been defined by Cartan in [5] who considered them as 
preferable null directions, naturally determined by the geometry of (M, g)). It follows from 
the definition of ly that a null direction [t] is principal iff W(Z1, Z2, 23, Z4) = 0, VZk E 
T6M,k = l,..., 4. In particular, because of (8), one can see that any integrable null 
direction [c] is principal. We also note that, at the points of M where W does not vanish, 
there is at most four different principal null directions. 

The multiplicity of a principal null direction [t] is determined by (5). By contrast with 
the Riemannian case, all possibilities for the multiplicity of a principal null direction can 
appear. The Petrov classification of the Weyl curvature tensors describes the situation (at a 
point of M) as follows: 

(i) Class I: There are exactly four principal null directions (of multiplicity 1) of W, i.e. 
the spectrum of W (considered as a traceless C-linear endomorphism of (A2 M, *)) is 
not degenerate. 

(ii) Class II: W has exactly 3 null directions, one of which has multiplicity 2 and the others 
have multiplicity 1. 

(iii) Class D : W has exactly 2 null directions of multiplicity 2. 
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(iv) 
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Class III: W has 2 null directions, one of which has multiplicity 3 and the other has 
multiplicity 1. 

w Class N: W has one null direction of multiplicity 4. 

(vi> Class 0: W has infinitely many null directions, i.e. W = 0. 

4. Proof of Theorems A, B and C 

We will proceed with both the Riemannian and Lorentzian cases. Let (M, g) be either 
an oriented Riemannian or Lorentzian four-manifold. We denote by @ the positive Weyl 
tensor, considered as a section of E$M in the Riemannian case and the Weyl tensor, 
considered as a section of .E4A4 when (M, g) is Lorentzian. The covariant derivative Dt& 
of~isasectionof~+M~~_M~~~M=~:M~~_M~~:M~)=_M(resp.of 
.TC3M 631 FM @ .@M 63 EM). We denote by 8@ and Pi& respectively the projections of 
V!& into @M 153 E-M and .E:M @ .X-M in the Riemannian case and into E3M 18 XM 
and E5M @I EM in the Lorentzian case. Then we have 

(9) 

= ~L~~+Ct, 6ii)S*CCi+I, &+2, &+3; rl)l 
i=l 

+ppY(c, h, 622,637 64; r]L (10) 

where< and& (i = l,..., 5, &+5 := &) are arbitrary sections of Z+M (resp. of EM) 
and q is a section of 27-M (resp. of EM). 

Note that in the Riemannian case -SQ corresponds to the codifferential SW+ of the 
positive Weyl tensor considered as a section of the rank 8 real vector bundle Ker[truce : 
A’M @ A+M H A’M] while Pp represents the complementary part P W+ of SW+ 
in the irreducible SO(4)-decomposition of the covariant derivative DW+ of the positive 
Weyl tensor. More precisely, it follows from (4) that for any complex vector fields Xk = 
&‘knk,k=1,2 ,..., 5wehave: 

(Dx, W+M2, x3, x4, x5) = E-(V29 rl3k-(1149 r]5)&@rjI *Y)(t2,633r 64, t55)v 

(11) 
pw+Gf1, x29 x39 x4, x5> = E-(TI2,7/3k(rl4,7I5P@Yh, A, B, k, 655; Sl), 

(12) 
-Jw+(xI, x2, X3) = E-(r2, q3)6~‘(<1,529 t3; rll). (13) 
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(The same formulae hold in the Lorentzian case if we consider the Weyl tensor instead of 
the positive Weyl tensor.) 

Now, it follows easily from Lemma 1, (1 1 ), ( 12) and ( 13) that Theorem A and Theorem B 
can be rewritten in the following “spinorial” form (which is also valid in the Lorentzian case). 

Theorem 1. Let (M, g) be an oriented Riemunnian (resp. Lorentzian) four-manifold and 
let 6 be a principal direction in E+ M ( resp. .E M ). Then 

(i) ife has multiplicity p = 2 ( resp. 2 5 p 5 4) then c is integrable iff 

s*(t;,6,...,[,,,...,; q) = 0, VTJ E E_M(resp. TM); (14) 
” 

(5-p) times 

(ii) ift is integrable and 69 satisfies 

W(t, {,t; 17) = 0, Vv E .X-M (resp. FM), 

then 6 has multiplicity at least 2. 

(15) 

Theorem 2. Let (M, g) be an oriented Riemannian (resp. Lorentzian) four-manifold and 
let 6 be a principal direction in E+ M (resp. .E M). Then 

(i) if 4 has multiplicity p, p = 1,2 (resp. 1 5 p 5 4), then t is integrable iff 

P*(6,6,...,e,,...,; q) = 0, VQ E .X-M (resp. TM); (16) 

(6-p) times 

(ii) if 6 integrable and P@ satisfies 

P*Y(t, 6,6,6,5; II) = 0, 4 E E+M (resp. EM), 
Vr] E Z-M (resp. EM), (17) 

then e has multiplicity at least 2. 

Proof of Theorems 1 and 2 
(i) Let [(I be a principal direction in E+M (resp. EM). If [c] has multiplicity 1, then 

(16) becomes P!R({, e, 6, e, 6; n) = 0, which, according to (lo), can be rewritten as 
(DzLy)(t, t,t, 6) = 0, VZ E TtM. When the multiplicity p of [e] is at least 2, we 
claim that any of conditions (14) and (16) is equivalent to the following: 

(DzU$, t, :. . , e)r1, (2,. . . , k-1) = 0, 

(5-p) times 

VI& E .E+M (resp. EM), VZ E Tc M. (18) 

Indeed, let p = 2 (similar arguments are valid in Lorentzian case for p > 2). Then, 
using (9) and the fact that p(e, f, c, t) = 0, V< E E+M, we obtain 

(19) 
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From (10) we also get 

E+K, 6WG7 C? 6; 77) = -P~Y(!r, t7 t> ct c; rl), 
vy E E+M, vq E E-M, (20) 

which together with (19) proves the claim. 
Now, since 6 has multiplicity p, (18) gives that for any sections [k, k = 1, . . . , p - 1, 

Of &IV 

VZWC, 4,. *. 3 C, (13 523.. . > <p-l> 

(5-p) times 

=-(5-pY(Dz6, c,...,t ,51?5‘2,...,rp-l). 

(4-p) times 

Thus condition (18) is satisfied iff 6+(&4,() = 0, i.e. iff 6 is integrable. This proves 
Theorem l-(i) and Theorem Z-(i). 

(ii) Suppose that [c] is an integrable section of P(Z+M) (the arguments in the Lorentzian 
case are the same). Since c is principal we have p(c, e, 6, J) = ~LE+((, 0, V< E 
E+M. We have to prove that any of the condition (15) or (17) implies /A = 0. Suppose 
that p # 0. Multiplying 4 by an appropriate non-vanishing function we can assume 
that @ is a constant. Then, by (9) and (IO), we obtain 

%(6, tP~l(e, 67 t; 17) = P*(e, t,e, 6, r; r) - (~~,,W(~, c, 6,tz> 
= -w+Pzt3 5) + w+u$xv7~~ 61, (22) 

where Z = $ 8 17 is an arbitrary element of TeM. 
Now suppose that either (15) or (17) holds on (M, g). Then formulas (21) and (22) 

give respectively: 

E+(qzJ&, C) + 2c+(D <@&, 6) = 0, VS E E+M Vg E .x-M (23) 

%(q@i$r C) - 2E+(+J&, t) = 0, V5 E X+M Vq E E-M. (24) 

Put Zj = 6 @I qj, Xj = [ @ qj; j = 1,2. Since 6 is integrable, we get from (23) and 
(24) respectively: 

t+(@1,Z,6Y C) = -2~+(&& 6) 

E+@,z$ !z) = 2~+(~&,& 6) 

and hence we obtain that either 

(25) 

(26) 

or 

E+(%,,z,C, t) = 2r+(@1,& 0 - 2E+(&,F, ‘C), (28) 
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where R denotes the curvature operator acting on the sections of E+M. Also by using 
(23) and (24) one can rewrite the right hand sides of (27) and (28) respectively as: 

-2c+(Rz1,x*C, 6) - 2E+(RX1,Z*C, C) 

and 

2E+(Rzl,X*t;, 6) + 2E+wx,,z*e, 0. 

Finally, taking into account that 

E+(RZ,,ZZe’ 5‘) = E-(rl, V2)*(63 63 6, <I 

and 

E+Wz,,x24f 0 + E+(Rx,,z& t> = 2E-(rll, 172Wv(!f, 63 !i,o 

we obtain that p (c, t, c, 5) = 0 in both cases, a contradiction. 0 

Proof of Theorem C. Suppose that P W = 0 and 6 is a principal null direction of W 
of multiplicity 1. According to Theorem 2-(i), 6 is integrable which contradicts Theorem 
2-(ii). ??

Remark. Besides the principal null directions of the Weyl curvature tensor of an ori- 
ented Lorentzian four-manifold (M, g), one can define principal null directions of the 
traceless Ricci tensor in the following way: consider the traceless Ricci tensor as a (real) 

section, say @, of the bundle E2M @ z2M. A non-vanishing section 6 of EM is said 
to be principal with respect to @ iff @((,t, ~1, ~2) = 0, Vqi, ~2 E FM. While prin- 
cipal null directions of the Weyl tensor always exist, the existence of principal null di- 
rections of the traceless Ricci tensor imposes constraints on the eigenvalues of the Ricci 
tensor, see [14, Chapter 8, Section 81. An immediate consequence of the second Bianchi 
identity and Theorem 1-(ii) is the Robinson-Shild theorem [17] which says that any in- 
tegrable null direction which is principal with respect to the Ricci tensor has multiplicity 
at least 2. Indeed, if e is a principal null direction of @ then the Ricci tensor Ric satis- 
fies Ric(&, Zj) = 0, VZi, Zj E TtM. If moreover c is integrable, the latter equality 
implies that (Dz, Ric)(Zj, Zk) = 0, VZi, Zj, Zk E TcM and hence, using the second 
Bianchi identity, we obtain 6 W (Zi , Zj , Zk) = 0, VZi , Zj , Zk E Tc M. Now, according 
to the Lorentzian version of (13), the above equality can be rewritten as 6 q (c)e, 4 ; n) = 
0, ‘v’n E EM and using Theorem 1-(ii) we infer that $ has multiplicity at least 2. 

In the Riemannian case a principal direction of the Ricci tensor Ric corresponds to a 
positive orthogonal almost-complex structure J for which Ric is J-invariant. If Ric is not 
a multiple of the metric such a structure exists whenever Ric has exactly two different 
eigenvalues of multiplicity 2. In such a case this structure is uniquely determined (up to 
sign) and it is integrable iff (14) holds [2, Proposition 41. In particular, applying Theorem A 
in the case of a Hermitian surface with J-invariant Ricci tensor, we obtain the Riemannian 
analogue of the Robinson-Shild theorem mentioned in Section 1 [2, Theorem 21. 
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5. Isotropic 2-planes and orthogonal almost-complex structures of oriented pseudo- 
Riemannian four-manifolds with metrics of zero signature 

Through this section we will suppose that (M, g) is an oriented pseudo-Riemannian 
four-manifold whose metric g is of signature 0. 

The connected component S&(2,2) of the structure group SO(2,2) of (M, g) has the 
splitting SOo(2, 2) = SL(2) x SL(2) which allows one to define two real vector bundles 
(of rank 2) S+M and S_ M associated with the action of SL(2) on R2. We will call &M 
positive and negative real spinor bundles of (M, g), respectively. Note that S+M and S_ M 
can be equipped with canonical symplectic structures E+ and E- which identify S&M with 
the dual vector bundles and give rise to splitting (1). Moreover, the tangent bundle TM is 
isomorphic to S+ M 8 S_ M and identity (2) is satisfied for the metric g. Thus, we have the 
splitting 

A*111 = S:M $ S!M 

of the bundle A2 M of 2-forms on M into the direct sum of the subbundles A+M = S: M 
and A-M = S! M of self-dual and anti-self-dual 2-forms on M. (In this case the Hodge star- 
operator * acts as an involutive endomorphism of A2 M and A* M are the (dz 1)-eigenspaces 
of *)_ 

For any point x E M real isotropic 2-planes at x can be identified with the fiber of the 
real projective bundles P(S+ M) and P(S_ M) at x (see [ 11). Denoting by 27 the Levi-Civita 
connection on the vector bundle S+ M (resp. S_ M) we will consider integrability condition 
(3) for a section of P(S+M) (resp. of P(S_ M)), i.e. a section [c] of P(S+M) is said to 
be integrable if ~+(Dzc, 6) = 0, VZ E TcM = (6 18 3; r] E S-M}, or equivalently, if 
Dz; Zj E Tt M, VZi , Zj E Te M. Since the real 2-plane distribution Tc M is isotropic the 
latter condition is equivalent to the usual integrability of Tc M. 

The Weyl curvature tensor W can be considered as a section of the vector bundle 
Syq(A2M) = $M @ S! M of traceless symmetric endomorphisms of A2M. If we 
denote by W+ the positive Weyl tensor (i.e. the projection of W on Syq(A+M) = SiM) 
and by @ the corresponding section of SiM, then all definitions concerning principal di- 
rections of ly given in Section 2 can be adapted to sections of P(S+ M) (see [l, Section 61). 
In contrast to the Riemannian and Lorentzian cases where principal directions of the Weyl 
tensor always exist, the existence of principal directions of S+ M is related to the existence 
of real roots of a fourth-degree polynomial with real coefficients (see [l, Section 61). To 
avoid this problem we consider the complex spinor bundles 2&M = S+ 8 C. Now, the 
complexified tangent bundle TM @ C is isomorphic to E+ M @I E_ M and the complex 
continuations of g, E+ and .c_ on TM 18 C satisfy (2). Besides real isotropic 2-planes the 
complex projective bundles P( & M) parametrize g-orthogonal almost-complex structures 
of (M, g) by means of the following correspondence: Fix a point x E M and denote by 
p(S+M,) the image of P(S+M,) in P(E+M,) by the natural embedding of S+M, into 
E+ M,. Then for any [c] E P(E+ M,) \&S+ Mx) we consider the complex isotropic a-plane 
Tc MI = {t @ 17; r] E I;_ MI}. The special choice of [t] gives T Mx @ C = Tt Mx @ TFM~, 
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where $ denotes the complex conjugate of 6. Hence the latter splitting defines a negative 
g-orthogonal almost-complex structure Jc on T Mx whose (1 , 0)-space is Tc M, . Consider- 
ations in Section 2 concerning positive orthogonal almost-complex structures of an oriented 
Riemannian four-manifold can be repeated for negative orthogonal almost-complex struc- 
tures of an oriented pseudo-Riemannian four-manifold with a metric of signature 0. In 
particular, for a section [t] of P(E+M)\&S+M) integrability condition (3) means that 
Jc is an integrable almost-complex structure. Moreover, as in the Riemannian case, @ is 
a real section of $M and hence for a principal direction [e] E P(E+M,)\@S+M,) 
Lemma 1 holds. This shows that for negative principal orthogonal almost-complex struc- 
tures of (M, g) Theorems 1 and 2 can be reformulated as Theorems A and B. 

Proof of Theorem D. We first note that any smooth section F of A+M such that g(F, F) = 
2 is the K8hler form of a negative g-orthogonal almost-complex structure J. Replacing 
M by a two-fold covering, if necessary, the positive Weyl tensor W+ can be written as: 
W+ = :hF @I F - ihId, where h is a nowhere vanishing function on M (equal at each 
point to the simple eigenvalue of W+) and F is a globally defined self-dual 2-form which 
generates the h-eigenspace of W+ at each point and satisfies g(F, F) = 2. Since the metric 
g is Einstein, the second Bianchi identity gives SW + = 0, and it follows from Theorem A 
that the negative orthogonal almost-complex structure J corresponding to F is integrable. 
Denote by 8 the Lee form of (M, g, J) defined (as in the Riemannian case) by dF = 8 A F 
or equivalently by 8 = -6F o J. From the above expression for W+ we infer easily that 
SW+ = 0 iff 8 + i d In h E 0 iff the metric 2 = h2j3g is Kahlerian. Suppose that M is 
compact. If (M, J, g) is Kahler then the scalar curvature Ah of M is a non-zero constant 
since W+ does not identically vanish, so (M, J) is either a minimal ruled surface of geneus 
2 2 or a minimal surface of class VZZo with no global spherical shell, and with second 
Betti number even and positive according to [ 15, Corollary 11. Let (M, J, g) be non-Kahler. 
Since both metrics g and g have J-invariant Ricci tensor, as in the Riemannian case (see 
[2, Theorem 21) we obtain that X = JgradFk is a non-trivial (real) holomorphic vector 
field with zeroes, hence the Kodaira dimension of (M, J) is -00, see [4]. Now, according 
to [ 15, Theorem 41, (M, J) is either a ruled surface or a minimal surface of class VZZo with 
no global spherical shell, and with second Betti number even and positive. 0 
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